Vibration Spectra and Rotational Isomerism of Chain Molecules. III.¹⁾ Ethyl Methyl Sulfide and Deuterium Compounds

Masaaki Sakakibara, Hiroatsu Matsuura, Issei Harada, and Takehiko Shimanouchi Department of Chemistry, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113 (Received July 26, 1976)

The Raman spectra of ethyl methyl sulfide and its three deuterated compounds $CD_3SC_2H_5$, $CH_3SCH_2CD_3$, and $CH_3SC_2D_5$ were measured for the liquid and crystalline states. The Raman spectra of the undeuterated species in the gaseous state were measured at different temperatures. The normal vibration frequencies were calculated by using a consistent set of force constants for aliphatic sulfides. The combination of the spectral observations of the deuterated compounds and the normal vibration calculations showed that only the *gauche* form exists in the crystalline state and the *trans* and *gauche* forms coexist in the liquid and gaseous states. The enthalpy difference between the *gauche* and *trans* forms in the gaseous state, ΔH_{G-T} , was obtained as -30 ± 50 cal/mol.

Ethyl methyl sulfide is the simplest sulfide with one internal rotation axis associated with the rotational isomerism. It has long been accepted that this molecule takes the *trans* form in the crystalline state and the *trans* and *gauche* forms in the liquid and gaseous states, although some ambiguities have been left out.²⁾

Recently, Nogami *et al.*³⁾ compared the spectra of ethyl methyl sulfide with those of related molecules and reached the conclusion that the crystalline ethyl methyl sulfide takes the *gauche* form but not the *trans* form as had been thought.

In the series of studies to establish the intramolecular force field as well as to clarify the existing rotational isomers of chain molecules, 1,4-6) we have investigated the Raman spectra of ethyl methyl sulfide and its deuterium compounds of CD₃SC₂H₅, CH₃SCH₂CD₃, and CH₃SC₂D₅ and determined the rotational isomerism and vibrational assignments for these molecules. The temperature dependence of the Raman spectra of the undeuterated species in the gaseous state has also been examined. The results are reported in the present paper.

Experimental and Calculation

The deuterium compounds were prepared from sodium

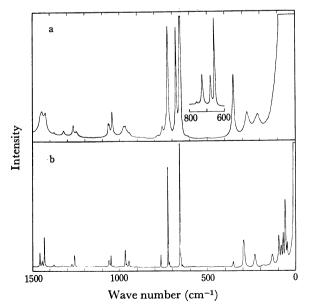


Fig. 1. Raman spectra of CH₃SC₂H₅. a: Liquid, b: crystal.

salts of appropriate thiols and deuterium compounds of methyl iodide or ethyl bromide and the undeuterated compound was purchased from Tokyo Kasei Kogyo Co., Ltd. All of the samples were purified by fractional distillations. The Raman spectra were recorded on a JEOL JRS-400D spectrometer. The Raman spectra in the gaseous state were measured at five different temperatures between 21 and 112 °C. Temperature measurements of the vapor in the laser beam were made by using nitrogen gas as a thermometer.⁷⁾

The Raman spectra in the liquid and crystalline states in the region below 1500 cm⁻¹ are shown in Figs. 1—4. The Raman spectra and the calculated frequencies in the 400—150 cm⁻¹ region are compared in Fig. 5.* The gaseous-state Raman spectrum of the undeuterated species is shown in Fig. 6. The

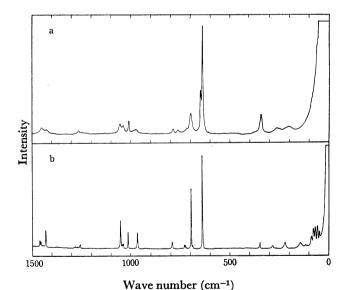


Fig. 2. Raman spectra of CD₂SC₂H₅.
a: Liquid, b: crystal.

* The relative intensities of the low-frequency bands (below 400 cm⁻¹) in the crystalline-state spectra are often found to vary depending on the condition of solidification (compare Figs. 1—4 and 5). It is certain that only one isomer exists in the crystalline state as is evident from the complete disapperance of some of the bands in the CS stretching vibration region. One possible explanation of the above observations is that the sample is composed of partially oriented crystallites and gives different intensity patterns due to the different orientation with respect to the polarization direction of the incident light.

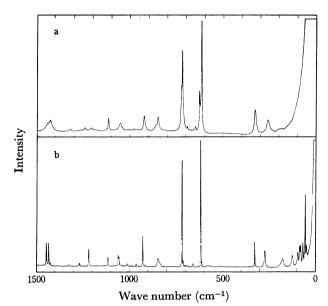


Fig. 3. Raman spectra of CH₃SCH₂CD₃. a: Liquid, b: crystal.

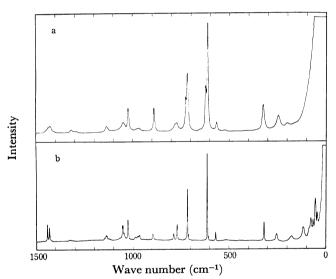


Fig. 4. Raman spectra of $CH_3SC_2D_5$. a: Liquid, b: crystal.

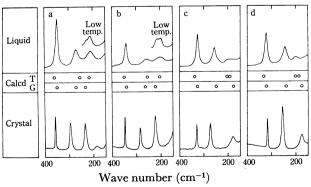


Fig. 5. Raman spectra and calculated frequencies in the $400-150~\rm cm^{-1}$ region. a: $CH_3SC_2H_5$, b: $CD_3SC_2H_5$, c: $CH_3SCH_2CD_3$, d: $CH_3SC_2D_5$.

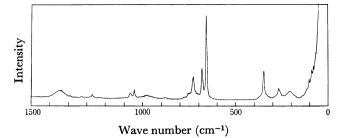


Fig. 6. Raman spectrum of CH₃SC₂H₅ in the gaseous state (120 Torr).

Table 1. Observed Raman frequencies and vibrational assignments of CH₂SC₂H₅

VIBRATIONAL ASSIGNMENTS OF $\mathrm{CH_3SC_2H_5}$				
Observed Raman frequency				
$(cm^{-1})^{a_1}$		Assignment ^{b)}		
Liquid	Crystal			
	1461 VW, sh	CH ₃ ip-d-deform		
1455 VW, sh	1457 VW	$\mathrm{CH_3}$ op-d-deform		
1444 VW	1444 VW	CH_3 ip-d-deform		
1427 VW	1431 VW	CH ₃ op-d-deform, CH ₂ scis		
1377 VW	1376 VW	CH ₃ s-deform		
1320 VW	1326 VW	CH ₃ s-deform		
1267 VW	1272 VW	CH ₂ wag		
1251 VW	1257 VW	CH ₂ twist		
1065 VW		CH ₃ ip-rock (T)		
1060 VW, sh	1060 VW	CH ₃ ip-rock (G)		
1044 VW	1049 VW	CH ₃ op-rock (G, T)		
982 VW		CC stretch (T)		
973 VW	968 VW	CC stretch (G)		
960 VW, sh	962 VW	CH ₃ ip-rock (G, T)		
955 VW, sh		CH ₃ op-rock (T)		
948 VW, sh	948 VW	CH ₃ op-rock (G)		
785 VW		CH ₂ rock (T)		
758 VW	764 VW	CH ₂ rock (G)		
725 M	{ 723 S 717 VW	CH ₃ -S stretch (G, T)		
$678 \mathrm{\ M}$		S-CH ₂ stretch (T)		
653 VS	{ 656 VS 651 VW	S-CH ₂ stretch (G)		
353 W	355 VW	SCC deform, CSC bend (G, T)		
273 VW	294 W	CSC bend, CC torsion (G), CC torsion (T)		
232 VW, sh	232 VW	CC torsion, CSC bend (G)		
211 VW		CSC bend, SCC deform (T)		
	184 VW			
	133 VW			
	95 W	Torsions (G) and		
	83 VW	lattice vibrations		
	71 W			
	59 M			
	47 VW	/		

a) VS: very strong, S: strong, M: medium, W: weak, VW: very weak, sh: shoulder. b) For the notation and definition of the local symmetry coordinates, see Ref. 8.

Table 2. Observed Raman frequencies and vibrational assignments of CD₃SC₂H₅

Observed Raman frequency (cm ⁻¹) ^{a)}		Assignment ^{b)}
Liquid	Crystal	Ü
	1462 VW	CH ₃ ip-d-deform
1454 VW	1457 VW	CH ₃ op-d-deform
1426 VW	1431 VW	CH ₂ scis
1378 VW	1376 VW	CH ₃ s-deform
1278 VW	1282 VW	CH ₂ wag
1266 VW	1268 VW	CH ₂ twist
1063 VW, sh		CH ₃ ip-rock (T)
1056 VW	1056 VW, sh	CH ₃ ip-rock (G)
1049 VW, sh	1052 W	CD ₃ ip-d-deform (G, T)
•	(1042 VW	CD ₃ op-d-deform (G, T)
1040 VW	1038 VW	CD ₃ s-deform (G), CH ₃ op-rock (T)
1013 VW	1014 VW	CH_3 op-rock (G), CD_3 s-deform (T)
983 VW		CC stretch (T)
971 VW	968 VW	CC stretch (G)
789 VW	793 VW	CH ₂ rock (G, T)
761 VW		CD ₃ ip-rock (T)
728 VW, sh	731 VW	CD ₃ ip-rock (G)
720 VW	726 VW	CD ₃ op-rock (G, T)
698 W	698 M	CD ₃ -S stretch (G, T)
648 M		S-CH ₂ stretch (T)
639 VS	641 VS	S-CH ₂ stretch (G)
345 VW	349 VW	SCC deform, CSC bend (G, T)
263 VW	285 VW	CC torsion, CSC bend (G) CC torsion (T)
215 VW, sh	221 VW	CSC bend, CC torsion (G
200 VW		CSC bend, SCC deform (T
	142 VW)
	116 VW	
	88 VW	
	77 VW	Torsions (G) and lattice
	68 VW	vibrations
	57 VW	
	46 VW)

a), b) See a and b, respectively, of Table 1.

observed frequencies and assignments on the basis of the calculated potential-energy distributions are listed in Tables 1—4.

The normal vibration frequencies were calculated by using a consistent set of force constants for aliphatic sulfides.⁵⁾ Detailed results of the calculations and the force constants are reported in a separate paper.⁶⁾

Results and Discussion

Spectra below 400 cm⁻¹ and Rotational Isomerism. In the frequency region below 400 cm⁻¹, five normal vibrations are expected for each isotopic species, two skeletal deformation (bending) and three torsional vibrations. As seen from Fig. 5, the frequencies calculated for the trans and gauche forms of CH₃SC₂H₅ or CD₃SC₂H₅ are not much different from each other. On the other hand, CH₃SCH₂CD₃ and CH₃SC₂D₅ give the frequencies which are distinctly different between the two forms.

Table 3. Observed Raman frequencies and vibrational assignments of CH₂SCH₂CD₃

Observed Raman frequency (cm ⁻¹) ^a)		Assignment ^{b)}
Liquid	Crystal	<u> </u>
1444 VW	1446 VW	CH ₃ ip-d-deform
1432 VW	1431 VW	CH_3 op-d-deform
1425 VW	1425 VW	CH ₂ scis
1321 VW	1326 VW	$\mathrm{CH_{3}}$ s-deform
1263 VW	1269 VW	CH ₂ wag (G)
1244 VW		CH ₂ wag (T)
1210 VW	1219 VW	CH ₂ twist (G, T)
112 7 VW		CD ₃ s-deform (T)
1115 VW	1115 VW	CD ₃ s-deform (G)
	1060 VW	CD ₃ ip-d-deform (G)
1052 VW	1054 VW	CD ₃ op-d-deform (G, T), CD ₃ ip-d-deform (T)
985 VW	988 VW	CH ₃ ip-rock (G)
955 VW	963 VW	CH ₃ op-rock (G, T), CH ₃ ip-rock (T), CH ₂ rock (T)
932 VW, sh		CC stretch (T)
924 VW	928 W	CH ₂ rock (G)
917 VW, sh	915 VW	CC stretch (G)
863 VW, sh		CD ₃ ip-rock (T)
851 VW	848 VW	CD ₃ ip-rock (G)
724 M, sh		CH ₃ -S stretch (T)
719 S	{ 719 S 712 VW	CH ₃ -S stretch (G)
692 VW		Origin unknown
651 VW	657 VW	CD ₃ op-rock (G, T)
628 M		S-CH ₂ stretch (T)
617 VS	618 VS	S-CH ₂ stretch (G)
329 W	327 W	CSC bend, SCC deform (G, T)
258 VW	272 VW	CSC bend, SCC deform (G)
200 VW		CSC bend, SCC deform (T), CC torsion (T)
	176 VW	CC torsion (G)
	125 VW]
	95 VW	
	85 VW	Torsions (C) and lettice
	80 VW	Torsions (G) and lattice vibrations
	67 VW	· · · · · · · · · · · · · · · · · · ·
	56 M	
	48 VW	,

a), b) See a and b, respectively, of Table 1.

The comparison between the observed and calculated frequencies of these isotopic species shows clearly that the crystalline-state spectra are explained only by the gauche form and the liquid-state spectra by the trans and gauche forms. Thus, the Raman spectra of the deuterium compounds are found to be important in studying the rotational isomerism of ethyl methyl sulfide.

As shown in Tables 1—4, the SCC deformation and CSC bending modes are highly coupled in all of the isotopic species. Such vibrational couplings are known to yield conformation-sensitive frequencies. However, the frequencies of the *trans* and *gauche* forms of CH₃-SC₂H₅ or CD₃SC₂H₅ resemble each other (Fig. 5). This is explained by a further coupling of the CSC bending

Table 4. Observed Raman frequencies and vibrational assignments of CH₃SC₂D₅

VIBRATIONAL ASSIGNMENTS OF $\mathrm{CH_3SC_2D_5}$				
Observed Raman frequency (cm ⁻¹) ^a)		Assignment ^{b)}		
Liquid	Crystal	Ŭ		
1442 VW, sh	1442 VW	CH ₃ ip-d-deform		
1430 VW	1431 VW	CH ₃ op-d-deform		
1320 VW	1325 VW	CH ₃ s-deform		
1140 VW, sh		CC stretch (T)		
1138 VW	1135 VW	CC stretch (G)		
1067 VW, sh	1067 VW, sh	CD ₂ scis (G, T)		
1050 VW	{ 1055 VW 1052 VW	CD ₃ op-d-deform (G, T)		
1044 VW	1046 VW	CD ₃ ip-d-deform (G, T)		
1025 VW	1025 VW	CD ₃ s-deform (G, T)		
978 VW	982 VW	CH ₃ ip-rock (G)		
968 VW	∫ 975 VW	CH ₃ op-rock (G), CH ₃		
200 7 11	\ 970 VW	ip-rock (T)		
960 VW, sh	962 VW	CD_3 op-rock (G, T), CH_3 op-rock (T)		
887 W	894 VW	CD ₃ ip-rock (G, T)		
786 VW, sh	786 VW	CD ₂ twist (G, T)		
770 VW	767 VW	CD_2 wag (G, T)		
723 W		CH ₃ -S stretch (T)		
716 M	{ 714 S 711 VW	CH ₃ -S stretch (G)		
622 M		S-CD ₂ stretch (T)		
612 VS	{ 613 VS 607 VW	S-CD ₂ stretch (G)		
564 VW	569 VW	CD ₂ rock (G)		
322 W	319 W	CSC bend, SCC deform (G, T)		
244 VW	254 VW	CSC bend, SCC deform(G)		
200 VW		CSC bend, SCC deform (T), CC torsion (T)		
	178 VW	CC torsion (G)		
	117 VW			
	85 VW, sh			
	78 W	Torsions (G) and lattice		
	66 VW	vibrations		
	55 M			
	45 VW			

a), b) See a and b, respectively, of Table 1.

mode with the $\mathrm{CH_2-CH_3}$ torsional mode in the gauche form of these isotopic species. This coupling is removed, however, in $\mathrm{CH_3SCH_2CD_3}$ or $\mathrm{CH_3SC_2D_5}$ owing to the downward frequency shift of the $\mathrm{CH_2-CD_3}$ or $\mathrm{CD_2-CD_3}$ torsional vibration.

The calculated frequencies of the $\rm CH_3-S$ torsion (160—150 cm⁻¹), the $\rm CD_3-S$ torsion (120—110 cm⁻¹) and the S-CH₂ or S-CD₂ torsion (lower than 100 cm⁻¹) do not differ between the *trans* and *gauche* forms.

It is noted for all of the isotopic species that the Raman band at 270—250 cm⁻¹ shifts appreciably to higher frequency in going from the liquid to the crystalline state. The magnitude of the shift is larger for the vibration with a larger contribution from the C–C torsional mode. This large difference between the frequencies of the two states have led previously to misinterpretation of the spectra.^{2b)} The shifting of this band is confirmed in the present study by observing the

Raman spectra of the liquid state at several low temperatures; namely the observed frequency is higher at lower temperature and approaches the crystalline-state value. It is also noted that the *gauche* bands of CH₃SC₂H₅ at 232 cm⁻¹ and of CD₃SC₂H₅ at 215 cm⁻¹ are clearly resolved in the low-temperature spectra (Fig. 5).

Sectra in Higher-Frequency Regions. In the 800—600 cm⁻¹ region, the bands due to the C-S stretching, CH₂ rocking and CD₃ rocking vibrations are expected. The C-S stretching vibration is known to give rise to much stronger Raman bands than the rocking vibrations.

In the crystalline state, all of the isotopic species exhibit two strong Raman bands separated by 70—100 cm⁻¹ (Figs. 1—4). The results of the normal coordinate treatment indicate that the higher-frequency band is assigned to the CH₃–S (CD₃–S) stretching vibration and the lower-frequency band to the S–CH₂ (S–CD₂) stretching vibration, respectively, of the *gauche* isomer.

The 678 cm⁻¹ Raman band of liquid CH₃SC₂H₅ which disappears on crystallization is assigned to the S-CH₂ stretching vibration of the *trans* isomer. On the other hand, the CH₃-S stretching vibration of the *trans* form has been considered to overlap with the *gauche* band at 725 cm⁻¹.³) This assignment is confirmed by the present experimental observation that the corresponding bands for CH₃SCH₂CD₃ and CH₃SC₂D₅ are split into two components in the liquid state. It is seen from the observed spectra of the various isotopic species that the C-S stretching frequencies of the *trans* form are slightly higher than those of the *gauche* form.

The vibrational assignments in other frequency regions have also been established in this study on the basis of the systematic treatment of normal coordinates (see Tables 1—4). The observed Raman frequencies of the deuterated species were found to be important in determining the force field of aliphatic sulfides.⁵⁾

Enthalpy Difference in the Gaseous State. The enthalpy difference between the gauche and trans forms in the gaseous state, $\Delta H_{\rm G-T}$, has been determined to be -30 ± 50 cal/mol through the analysis of the temperature dependence of the intensities of the band pairs at 682 (trans) and 657 cm⁻¹ (gauche) of the undeuterated species. It is of interest to compare the $\Delta H_{\rm G-T}$ values of butane, ethyl methyl ether, and ethyl methyl sulfide. They are 966 ± 54 ,7 1500 ± 200 ,9 and -30 ± 50 cal/mol, respectively. The differences in the bond nature of CC-XC (X=C, O, S) groups, as is evident from the above values of enthalpy difference together with those of XC-CY (Y=C, O, S) groups, yield a variety of the structures and properties of longer chain molecules.

References

- 1) Part II: I. Harada, H. Takeuchi, M. Sakakibara, H. Matsuura, and T. Shimanouchi, Bull. Chem. Soc. Jpn., 50, 102 (1977).
- 2) a) D. W. Scott, H. L. Finke, J. P. McCullough, M. E. Gross, K. D. Williamson, G. Waddington, and H. M. Huffman, J. Am. Chem. Soc., 73, 261 (1951); b) M. Hayashi, Nippon Kagaku Zasshi, 77, 1692 (1956); 78, 627 (1957); M. Hayashi, T. Shimanouchi, and S. Mizushima, J. Chem. Phys., 26, 608 (1957); c) D. W. Scott and M. Z. El-Sabban, J. Mol. Spectrosc., 30, 317 (1969); d) M. Ohsaku, Y. Shiro, and

- H. Murata, Bull. Chem. Soc. Jpn., 45, 954 (1972); 46, 1399 (1973).
- 3) N. Nogami, H. Sugeta, and T. Miyazawa, Bull. Chem. Soc. Jpn., 48, 3573 (1975).
- 4) T. Shimanouchi, Y. Ogawa, M. Ohta, H. Matsuura, and I. Harada, Bull. Chem. Soc. Jpn., 49, 2999 (1976).
- 5) M. Ohta, Y. Ogawa, H. Matsuura, I. Harada, and T. Shimanouchi, Bull. Chem. Soc. Jpn., in press.

 6) T. Shimanouchi, H. Matsuura, Y. Ogawa, and I.
- Harada, J. Phys. Chem. Ref. Data, to be published.
- 7) A. L. Verma, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys., 60, 1540 (1974).
- 8) T. Shimanouchi, "Tables of Molecular Vibrational Frequencies," Consolidated Vol. 1, U. S. Govt. Printing Office, No. C13.48: 39 (1972).
- 9) T. Kitagawa and T. Miyazawa, Bull. Chem. Soc. Jpn., 41, 1976 (1968).